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Abstract: The BCFW recursion relations provide a powerful way to compute tree am-

plitudes in gauge theories and gravity, but only hold if some amplitudes vanish when two

of the momenta are taken to infinity in a particular complex direction. This is a very

surprising property, since individual Feynman diagrams all diverge at infinite momentum.

In this paper we give a simple physical understanding of amplitudes in this limit, which

corresponds to a hard particle with (complex) light-like momentum moving in a soft back-

ground, and can be conveniently studied using the background field method exploiting

background light-cone gauge. An important role is played by enhanced spin symmetries

at infinite momentum-a single copy of a “Lorentz” group for gauge theory and two copies

for gravity-which together with Ward identities give a systematic expansion for amplitudes

at large momentum. We use this to study tree amplitudes in a wide variety of theories,

and in particular demonstrate that certain pure gauge and gravity amplitudes do vanish at

infinity. Thus the BCFW recursion relations can be used to compute completely general

gluon and graviton tree amplitudes in any number of dimensions. We briefly comment on

the implications of these results for computing massive 4D amplitudes by KK reduction, as

well understanding the unexpected cancelations that have recently been found in loop-level

gravity amplitudes.
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1. Introduction

The textbook formulation of perturbative QFT as an expansion in Feynman diagrams in-

cludes an enormous amount of unphysical off-shell structure. This is particularly true of

Yang-Mills theories and General Relativity, where the gauge and diffeomorphism redun-

dancies are introduced to make Lorentz invariance and locality manifest. While Lorentz

invariance is very likely an exact property of Nature, non-perturbative gravity makes it im-

possible to define off-shell local observables, and therefore locality is a more suspect notion

at a fundamental level. It would therefore be interesting to find a different formulation

of QFT not relying so heavily on manifest locality. Such a formulation might allow for a

more natural inclusion of gravity, much like the non-manifestly deterministic least action

formulation of classical mechanics generalizes more naturally to quantum mechanics than

Newton’s laws. There is a more down-to-earth reason for suspecting that another formula-

tion of QFT exists: on-shell gauge and gravity amplitudes, particularly for many external

legs, receive contributions from a huge number of Feynman diagrams, but extensive cance-

lations take place and the final results are strikingly simple, exhibiting regularities that are

invisible in the diagrammatic expansion [1 – 3]. The simplicity of the final answer suggests

that there should be another way of computing the amplitudes more directly.
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1.1 BCFW Redux

For tree amplitudes, a huge step in this direction was taken by Britto, Cachazo, Feng [4]

and further clarified with Witten [5]. Their work was an outgrowth of Witten’s twistor

formulation of four-dimensional Yang-Mills [6, 7], which is crucially tied to 4D physics.

Indeed, the great simplicity of maximal helicity violating amplitudes is due to their close

connection to self-dual solutions of the Yang-Mills equations of motion [8, 9], which is very

special to four dimensions. But the BCFW ideas do not rely on twistors or the spinor-

helicity formalism, and are instead a general property of QFT in any number of dimensions,

as we now review.

Consider the n-point amplitude M(pi, hi) for massless particles with hi “helicities” in a

general number D of spacetime dimensions. When we consider gauge theory, we will define

M(pi, hi) such that the color factors are already stripped away. We will also suppress the

trivial overall multiplicative coupling constant dependence. The key idea is to pick two

external momenta pj,pk, and to analytically continue these momenta keeping them on-shell

and maintaining momentum conservation. Specifically, BCFW take

pj → pj(z) = pj + qz and pk → pk(z) = pk − qz (1.1)

where we must have q · pj,k = 0 , q2 = 0. This is impossible for real q, but possible for

complex q. To be explicit, choose a Lorentz frame where pj, pk are back to back with equal

energy and use units where that energy is 1. Then, we can choose

pj = (1, 1, 0, 0; 0 . . . , 0), pk = (1,−1, 0, 0; 0, . . . 0), q = (0, 0, 1, i; 0, . . . 0) (1.2)

Note that this deformation only makes sense for D ≥ 4.

What about the polarization tensors? Note that for gauge theory in a covariant gauge,

q = ǫ−1 = ǫ+
2 . This makes it natural to use a +,−, T basis for spin 1 polarization vectors

where

ǫ−j = ǫ+
k = q, ǫ+

j = ǫ−k = q∗, ǫT = (0, 0, 0, 0, . . . , 1, . . . , 0) (1.3)

with D−4 different ǫT forming a basis in the transverse directions. When the momenta are

deformed, the polarization vectors must also change to stay orthogonal to their associated

momenta and maintain their inner products. This requires

ǫ−j (z) = ǫ+
k (z) = q, ǫ+

j (z) = q∗ − zpk, ǫ−k (z) = q∗ + zpj , ǫT (z) = (0, 0, 0, 0, . . . , 1, . . . , 0)

(1.4)

Alternatively, we can keep all the momenta and polarization vectors real but imagine that

we are working in SO(D−2, 2) signature; this point of view will allow us to avoid subtleties

when we take the complex conjugates of field derivatives. Graviton polarization tensors

are simply symmetric, traceless products of these gauge polarization vectors. A general

product of polariation tensors including the antisymmetric and trace parts gives amplitudes

including a dilaton and antisymmetric two index tensor field.

With this deformation, M(pi, hi) → M(z) becomes a function of z. At tree level,

M(z) has an extremely simple analytic structure — it only has simple poles. This follows
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from a straightforward consideration of Feynman diagrams, as all singularities come from

propagators, which are simply

1

PJ(z)2
=

1
(
∑

i∈J pi

)2 (1.5)

where J is some subset of the n momenta. Since pj(z)+pk(z) is independent of z, this only

has non-trivial z dependence when only one of pj(z) or pk(z) are included in J . Without

loss of generality we take j ∈ J , in which case we have

1

PJ (0)2 − 2zq · PJ
. (1.6)

This shows that all singularities are simple poles located at zJ = PJ(0)2/(2q · PJ). Fur-

thermore, the residue at these poles has a very simple interpretation as a product of lower

amplitudes:

resM(z → zJ) =
∑

h

M(i ∈ J, pi(zJ ), hi;−PJ (zJ), h) × M(i /∈ J, pi(zJ ), hi;PJ (zJ),−h).

(1.7)

where we have a sum over helicities for the usual reason, guaranteed by unitarity, that the

numerator of the propagator can be replaced by the polarization sum on shell.

So far everything has been kinematical and true for an arbitrary theory. What is

remarkable is that for certain amplitudes in some theories, M(z → ∞) vanishes. Now,

meromorphic functions that vanish at infinity are completely characterized by their poles;

if M(z → ∞) = 0, we have 0 =
∫

dz/zM(z) = M(0) + residues, and this gives us the

BCFW recursion relation

M(0) =
∑

J,h

M(i ∈ J, pi(zJ);hi,−PJ (zJ), h)
1

P 2
J

M(i /∈ J, pi(zJ), hi;PJ (zJ ),−h) (1.8)

where h indicates a possible internal helicity. The lower amplitudes are on-shell (in com-

plexified momentum space), because all the momenta are on shell though evaluated at a

complex z = zJ . These recursion relations produce a higher-point amplitude by sewing

together lower-point on shell amplitudes.

Of course the strategy of determining amplitudes directly from their singularities is a

familiar and central theme of the S-matrix program. However, the old ideas were largely

restricted to 2 → 2 scattering and the complexification of the Mandelstam s, t, u variables,

and the generalization to higher-point amplitudes was not clear. Over the past twenty years,

S-matrix ideas have had a resurgence, as it has become increasingly clear that they provide

powerful methods for computing field theory amplitudes, for instance as in the unitarity

methods of Bern, Dixon, Dunbar and Kosower [10]. The BCFW recursion relations are

another step in this direction. Indeed, the BCFW deformation of momenta can be viewed

as a correct general procedure for complexifying on-shell momenta and, at least at tree

level, the recursion relations beautifully fulfil the S-matrix dream of dealing directly with

on-shell amplitudes without reference to an off-shell Lagrangian.

– 3 –
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Figure 1: The BCFW recursion relation computes an n-point amplitude by sewing together lower-

point amplitudes with (complex) on-shell momenta.

1/z 1/z
z (z2)

z(z2) z(z2)
z (z2)

Figure 2: Contributions to the analytically continued amplitudes M(z) from individual Feynman

diagrams diverge as z → ∞ for gauge theories and gravity. This is due to the vertices that grow as

z, z2 for gauge theory and gravity, which overcompensate for the 1/z scaling of propagators.

1.2 Surprising behavior of M(z) as z → ∞

In order to derive these recursion relations, it was necessary to assume M(z → ∞) vanishes.

But this is far from obvious, and is not even true for every amplitude in a general theory.

Indeed, naively it is never true! Consider for instance φ4 theory, here the 2 → 2 amplitude

is momentum independent and hence z independent. With more external lines there are

propagators that as we have seen above fall as 1/z, however, there is always a diagram

with the φ4 interaction involving j, k and two other lines, with each of the lines separately

attaching to two separate sets of external states. The large momentum does not flow

through any of the propagators, so general amplitudes go to a constant as z → ∞

Mφ4

(z) → z0 (1.9)

The situation seems even worse with gauge theory and gravity, where there are mo-

mentum dependent vertices that scale as z in gauge theory and z2 in gravity, and so we

might expect that M(z) diverges as z → ∞. Indeed, naively in gauge theory

M−+
naive(z) → z, M

−−/++
naive (z) → z2, M+−

naive(z) → z3, (1.10)
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where the + and − signs represent the different gauge boson helicity states, and different

powers of z result from the growth of some of these polarization vectors as z → ∞. In

gravity the naive divergence grows as power of the number of external legs, for example

M−−,++
naive (z) → zn−1 · · · , M++,−−

naive (z) → zn+3. (1.11)

Nonetheless, at least for some hj , hk, the amplitudes do vanish as z → ∞! Even

when they do not, they often diverge more mildly than the naive expectation; this neatly

encapsulates the heavy cancellations that take place in the explicit evaluation of Feynman

digrams. For instance for 4D gauge theories, BCFW showed that

M−+(z), M−−(z), M++(z) → 1

z
and M+− → z3. (1.12)

BCFW gave a simple diagrammatic proof for (−+), whereas the (−−) and (++) cases

needed a different argument based on MHV diagrams and the CSW recursion relations,

which are very special to D = 4. Note that for the recursion relations to hold, it is not

necessary for M(z) to vanish for all hjk helicities. For gauge theory it suffices to have e.g.

M−h(z → ∞) all vanish, since for any amplitude, we can always choose q to co-incide with

ǫ−1 ; for gravity it suffices for M−−h(z → ∞) to vanish for the same reason.

In 4D gravity, surprisingly good behavior for amplitudes was first observed by [11, 12].

Cachazo et. al. then showed in beautiful papers [13, 14] that

M−−,++ → 1/z2 and M++,−− → z6 (1.13)

Their analysis for the (−−,++) case involved intricate diagrammatic and combinatorial

recursion arguments, and the (−−,−−), (++,++) and (++,−−) cases were only con-

trolled for MHV amplitudes. Subsequently, Bern et. al. showed that the (++,−−)

scaling holds in general, and found the general scaling for all helicity combinations up

to 10 external legs [15, 16]. Note that the z scaling conforms to the famous KLT pattern

Mgrav ∼ Mgauge × Mgauge [17], (though KLT only controls these amplitudes for 2 → 2

scattering while for more legs, term by term the amplitudes are nearly as divergent as

with standard Feynman diagrams). It is remarkable that, far from being uncontrollably

divergent, certain gravity amplitudes are even better behaved at infinity than their gauge

counterparts, which are in turn better behaved than the simplest scalar field theories!

There is clearly simplicity and a pattern to M(z → ∞) in gauge theory and gravity.

What is known so far in generality is restricted to four dimensions, and the techniques

used to understand the large z behavior differ from case to case and do not illuminate

this pattern, or tell us what to expect for general theories in any number of dimensions.

In this paper, we will develop a more transparent, physical understanding of the large z

behavior that is valid in any number of dimensions; apart from a clearer understanding of

the physics this also immediately generalizes the BCFW recursion relations to gauge and

gravity amplitudes in any number of dimensions.

2. Understanding M(z → ∞) in YM and GR

We begin by observing that as z → ∞, the momenta pj,k tend to ±zq, and if we think

of one as ingoing and the other as outgoing, this is simply a limit where a hard light-like

– 5 –
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particle is shooting through a soft background. For real momenta, this is the very familiar

eikonal limit — indeed the soft collinear effective theory [18] provides a natural formalism

for studying physics in this regime, though we won’t make any use of the machinery of this

subject in our analysis. Intuitively, a highly boosted particle will not be “much” scattered

by the background, and its helicity should be conserved. This is not precisely our situation

because our hard light-like momentum is complex (or equivalently real but in (D − 2, 2)

signature). We will see that we can understand the behavior of the amplitudes at large

z as an expansion in 1/z, that both quantifies the intuition for real momenta and can

be used to understand the scalings for the complex momenta of interest. Since we only

care about the z dependence of the amplitudes, all the soft physics can be absorbed into

determining some classical background, and the single hard line can be studied by looking

at quadratic fluctuations about this background. Another natural approach would be to

use the worldline formalism for a particle propagating in a background field [20], but we

will see that the standard field theory techniques are already very simple.

We proceed to study the large z behavior of amplitudes in theories of increasing com-

plexity; scalar QED, scalar Yang-Mills, Yang-Mills, gravity coupled to a scalar, to a photon,

and finally gravity itself.

2.1 Scalar QED amplitudes

We start with scalar QED as a simple warm-up. We will dwell on a number of issues at

greater length in this subsection where they can be explored in the simplest setting, and

abbreviate the analagous discussion in the subsequent subsections.

Consider amplitudes Mn with exactly two external scalar lines and n external photons.

We choose to analytically continue the momenta corresponding to the scalar lines. The

scalar Lagrangian is

L = Dµφ∗Dµφ. (2.1)

where we view Aµ as a background field in which the highly boosted scalar particle prop-

agates. Note that naively M(z) → z for large z, since the scalar-scalar-photon vertex has

a momentum that scales as z. We will see that however that Mn(z) is in fact much better

behaved.

In considering the amplitude for large momentum, we immediately run into the prob-

lem that ‘large’ momenta for φ is not a gauge-invariant. The natural way to deal with this

issue is to perform a field re-definition (as in SCET [19]), stripping off a Wilson line from

the field

φ(x) = Wn(x)φ̃(x), where Wn(x) = exp

(

i

∫ 0

−∞

dλ nµAµ(x + λn)

)

(2.2)

and nµ determines the direction of the Wilson line stretching from the point −∞ to x.

Since φ̃(x) is gauge invariant, its ordinary derivative gives a gauge invariant definition of

momentum. The Lagrangian becomes

L = (Wn∂µφ̃ + DµWnφ̃)∗(Wn∂µφ̃ + DµWnφ̃). (2.3)

– 6 –
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and the only terms that grow as z → ∞ are the cross terms such as

∂µφ̃∗φ̃W ∗

nDµWn → izqµφ̃∗φ̃W ∗

nDµWn. (2.4)

Now, W ∗

nDµWn is gauge invariant and a trivial computation shows

qµW ∗

nDµWn = i

∫ 0

−∞

dλ qµFµν(x + nλ)nν (2.5)

Choosing nµ = qµ, corresponding to the Wilson line pointing in the light-like direction of

the large momentum qµ itself, this combination vanishes due to the antisymmetry of Fµν ,

showing in a gauge-invariant way that there are no physical O(z) vertices in this theory.

Of course, there is a much simpler way of eliminating gauge redundancy and working

with gauge invariant quantities-we can simply choose a gauge! The only O(z) interactions

from the original lagrangian involve q ·A terms, so the natural choice is q-light cone gauge,

with

q · A = A− = 0. (2.6)

Indeed, the gauge invariant −iW ∗

q DµWq we encountered in the previous paragraph is noth-

ing but Aµ itself in this light-cone gauge.

Although the complex q may make this gauge choice seem unusual, one can simply

view it as a light cone gauge in SO(D − 2, 2) signature. The utility of q-light cone gauge

for gauge theory computations was recognized by Chalmers and Siegel in [21], where it

was dubbed “space-cone” gauge. Vaman and Yao [22] made use of this gauge to give an

understanding of the BCFW rules for gauge theory. In our discussion of Yang-Mills theory

and especially gravity in the next subsections, we will simply go to light-cone gauge rather

than give the analog of the explicitly gauge invariant description in terms of Wilson lines

as in the above.

We have seen that there are no interaction vertices at O(z). The scalar propagator is

proportional to 1/z, so all diagrams with at least one scalar propagator vanish as z → ∞.

Of course, due to the four-point interaction vertex, M2(z) goes to a constant at large

z, however, all n-point amplitudes with n > 2 photons must have at least one scalar

propagator, and so we conclude

M2(z) → z0 and Mn>2(z) → 1

z
, (2.7)

In fact clearly, for large n there are more propagators and the amplitudes are suppressed

by higher powers of z. Thus the BCFW Recursion Relations apply to scalar QED with

two external scalars and at least three external photons.

It is worth noting that the better behavior of the amplitudes at large z is not merely

a consequence of gauge invariance. The addition of higher dimension gauge invariant

operators, for example the operator Dµφ∗DνφFµ
α F να, leads to vertices with positive powers

of z. The good behavior of M(z → ∞) is thus a special feature of the two-derivative

Lagrangian neglecting any higher-dimension operators.
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2.2 Dominant large z behavior

Our arguments above for eliminating the O(z) vertices either using Wilson lines or going to

light-cone gauge were a little too quick; there is a subtlety that is irrelevant for scalar QED

but will be important in the rest of the examples, and will allow us to isolate the dominant

large z amplitude in all cases. Consider again our argument that qµW ∗

nDµWn vanishes for

nµ = qµ. It is true that the integrand qµFµν(x + nλ)nν vanishes as nµ → qµ, but there is

also a semi-infinite integral over λ, so one might have a 0 ×∞ ambiguity. Indeed, simply

going to momentum space we can perform the λ integral and find

[qµW ∗

nDµWn] (p) =
qµFµν(p)nν

p · n =
(A(p) · q)(p · n) − (A(p) · n)(p · q)

p · n (2.8)

As long as p · q 6= 0, we can take nµ → qµ and this vanishes as expected. But if p · q = 0,

then we have a problem — as n → q there is a 0/0 cancelation and we find

limn→q [qµW ∗

nDµWn] (p) = A(p) · q (2.9)

goes to a constant.

This subtlety also shows up in going to light-cone gauge, and indeed obstructs making

this gauge choice. In order to choose light cone gauge, in momentum space we need to find

a Λ(p) so that

qµAµ(p) + iqµpµΛ(p) = 0, (2.10)

but this is impossible if p · q = 0 unless the gauge transformation becomes singular Λ(p) →
∞.

We conclude that if there is a component of the background field carrying a a momen-

tum p such that p · q = 0, there is a physical O(z) vertex. In scalar QED, the photons

are non-interacting so the background field is a sum of the external plane waves, and the

background field momenta are just the external momenta. In non-Abelian theories there

are self-interactions, and the possible components of background field momenta are simply

sums of subsets of the external soft particle momenta. Thus generic momenta will indeed

have p · q 6= 0 and the subtlety above is irrelevant. But the sum over all the external

momenta must equal −(pj + pk), which is orthogonal to q. Therefore, there is a unique

set of diagrams where this subtlety is relevant — those diagrams where the two external

analytically continued lines meet in a three point vertex with a single background field,

which then connects to all remaining external fields.

In scalar QED this never occurs, because the only such diagram would only include

one photon. However, this unique class of diagrams do occur and will be of importance in

non-Abelian gauge theory and even more so in gravity. The z scaling of these diagrams

is the naive one corresponding to the number of momenta in the vertex — up to O(z)

for gauge theory and O(z2) for gravity, and therefore these unique diagrams dominate the

amplitude at large z.

We can rephrase this discussion directly in the q-lightcone gauge. Here, the only

singularities occur when we eliminate the “+” components of the gauge or gravity fields, for
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pj + zq pk − zq
j k

Figure 3: The unique set of diagrams, for which light-cone gauge is singular, and which dominate

large z amplitudes.

instance in gauge theory we have ∂−A+−∂iA
i = 0, so that A+(p) has a 1/p− singularity. As

we have seen, there is a unique set of diagrams where p− vanishes for an internal background

line. Since none of the other diagrams have this singularity and the full amplitude is gauge

invariant, we conclude that the 1/p− factors are always cancelled by p− factors in vertices

to leave a non-singular result from this unique class of diagrams alone. But, since the light-

cone gauge choice is non-singular for the other diagrams where the leading z dependence is

eliminated, we can also conclude that nothing can cancel the naive z scaling of our unique

set of diagrams either. Thus we have identified the leading contributions to the amplitude

at large z.

2.3 Scalar-Yang-Mills amplitudes

We move on to consider scalar Yang-Mills, where the above discussion can be seen in action

in the simplest setting. In this case, the Lagrangian is

L = trDµφ∗Dµφ (2.11)

The soft background field Aµ is the solution of the Yang-Mills equations of motion that

non-linearly completes the sum over the plane waves corresponding to the soft external

gluons (formally, to insure that only connected diagrams are summed, the soft polarization

vectors should be thought of as being anti-commuting, see e.g. [9]). We will be assuming

that φ is in the adjoint representation of the gauge group, since this will allow greater

cohesion when we move on to pure Yang-Mills in the next section.

Now for the physics. We can again fix q-lightcone gauge to eliminate the O(z) vertices

as in scalar QED, but now, due to gluon self-interactions, we have the unique set of diagrams

described above, with an arbitrary number of external gluons that only include a single

– 9 –
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scalar-gluon vertex, where two scalars with momenta pj(z) and pk(z) meet an off-shell

gluon field with momentum −(pj+pk). Since the two external scalar lines in these diagrams

couple directly through a 3-point vertex, the scalars must be adjacent in color at leading

order in Nc (planar diagrams). As we argued in the previous subsection, these diagrams

scale as O(z).

For scalars that are not adjacent in color, the self-interactions of the gluons allow

diagrams without scalar propagators to contribute, so the amplitude will be O(1). So we

have found

Mjk adj. in color(z) → z and Mjk non−adj. in color(z) → z0 (2.12)

This behavior can be readliy verified in simple examples where explicit amplitudes are

known, such as 2 → 2 scattering. Thus unlike scalar QED, there are no BCFW Recur-

sion Relation in scalar Yang-Mills theory when the external scalar lines are analytically

continued.

2.4 Gluon amplitudes and enhanced spin symmetry as z → ∞
For gluon amplitudes in gauge theory, we will study the two particle amplitude Mµν in a

soft background field, where µ and ν are the Lorentz indices that will be contracted with

the polarization vectors of the highly boosted particle (we suppress the color indices on the

amplitude). A new feature will be the presence of an enhanced spin “Lorentz” symmetry

which will largely control the large z behavior of the amplitude. Together with a simple

application of the Ward identity, this will yield the desired large z scalings.

Expanding the gauge field Aµ = Aµ + aµ where Aµ is the background and aµ the

fluctuation, the quadratic Lagrangian for aµ is

L = −1

4
trD[µaν]D

[µaν] +
i

2
tr [aµ, aν ]F

µν (2.13)

where D is the A-covariant derivative. As usual in the background field method, we have

two types of gauge symmetry — gauge transformations of a and of A. We fix the a gauge

freedom in the usual way by adding a gauge fixing term (Dµaµ)2 to the lagrangian. The

gauge fixed Lagrangian is

L = −1

4
trDµaνD

µaν +
i

2
tr[aµ, aν ]Fµν (2.14)

.

Note that the first term in this Lagrangian is the only one with the potentially O(z)

vertices, and hence dominates in the amplitude as z → ∞. But this first term also enjoys an

enhanced “spin” symmetry — a Lorentz transformation acting on the ν indices of aν alone.

We’ll call this a spin “Lorentz” invariance, since the actual Lorentz invariance is explicitly

broken by the non-vanishing background field even for the first term in the Lagrangian. To

make this symmetry more explicit, we trivially re-label indices so that the Lagrangian is

L = −1

4
tr ηabDµaaD

µab +
i

2
tr[aa, ab]F

ab (2.15)

– 10 –



J
H
E
P
0
4
(
2
0
0
8
)
0
7
6

As already noted, the first term dominates the large z amplitude but is spin “Lorentz”

invariant, while the second term breaks the Lorentz symmetry as an antisymmetric tensor.

This allows us to determine the form of Mab. Since all the O(z) vertices come from the first

term, and only repeated use of these vertices can possibly give an amplitude that scales

as z, the part of the amplitude that scales as z must also be proportional to ηab. This

reflects the intuitively familiar fact that the helicity of a highly boosted particle blasting

through a soft background is conserved. The first contribution that breaks the “Lorentz”

spin symmetry arises from a single insertion of vertices coming from the second term in

the Lagrangian, and must be antisymmetric in (ab), just as F ab is. Further insertions give

more powers of 1/z which multiply general matrices in (ab) space. Thus, the “Lorentz”

symmetry guarantees that the amplitude has the form

Mab = (cz + · · · )ηab + Aab +
1

z
Bab + · · · (2.16)

where Aab is antisymmetric in (ab).

We can now find the z-dependence of the amplitude for various helicity combinations

by contracting our ansatz for Mab with polarization vectors. The Ward identity further

constrain Mab. For Yang-Mills theory, the Ward identity says that

pja(z)Mabǫkb = 0, (2.17)

and similarly with j and k reversed, (but recall that pjaM
ab 6= 0 when the second b index

is not contracted with ǫk). This implies

pja(z)Mabǫkbν = 0 =⇒ qaM
abǫkb = −1

z
p1aM

abǫkb (2.18)

which is extremely useful because ǫ−1 = q, so we can use it to replace ǫ−j → −1
z pj. Using this

information, let us look at the large z amplitudes for a few helicity combinations. Consider

first M−+; recall that this was the only case that was understood by BCFW directly in

terms of Feynman diagrams

M−+ = ǫ−jaM
abǫ+

kb = −1

z
pja

[

(cz + · · · )ηab + Aab +
1

z
Bab + · · ·

]

qb

= −1

z
pjaA

abqb + O(1/z2) → 1

z
(2.19)

as z → ∞. A more non-trivial case is

M−−(z) = ǫ−jaM
abǫ−kb = −1

z
pja

[

(cz + · · · )ηab + Aab +
1

z
Bab + · · ·

]

(q∗b + zpjb)

= −1

z
pjaA

abq∗b − 1

z
pjaB

abpjb + O(1/z2) → 1

z
(2.20)

as z → ∞; note that we have used the fact that q∗ · pj, p2
j , and pjapjbA

ab all vanish, the

last due to the anti-symmetry of Aab. As a last example before we simply list the results,

let us consider

M+−(z) = ǫ+
jaM

abǫ−kb = (q∗a − zpka)

[

(cz + · · · )ηab + Aab +
1

z
Bab + · · ·

]

(q∗b + zpjb)

→ z3. (2.21)
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ǫ1\ǫ2 − + T

− 1/z 1/z 1/z

+ z3 1/z z

T1 z 1/z z

T2 z 1/z 1

Table 1: This table displays the results for the z-scalings in gauge theory. The difference between

T2 and T1 is simply whether or not ǫT
i · ǫT

j = 0, respectively.

Table 1 displays the general results for gauge theory. The difference between T2 and T1 is

simply whether or not ǫT
j ·ǫT

k = 0, respectively. We have checked these results for the 2 to 2

amplitude in any number of dimensions by using results in the literature. Since M(z → ∞)

vanishes for all the (−, h) helicity combinations, BCFW recursion relations can be used to

compute tree gluon amplitudes in any number of dimensions.

Note that for this discussion, we did not use the q-lightcone gauge for the background;

exploiting this gauge gives us further information. As before, q-lightcone gauge eliminates

the O(z) vertices except for the unique set of diagrams — but as with the scalar-YM case,

these diagrams only exists if the hard momentum lines are adjacent in color. This is also

true of sub-leading vertices coming from a single insertion of the F ab interaction. Therefore,

for non-adjacent colors, Mab begins at O(1/z). This is enough to guarantee that e.g. M−+

scales as 1/z2 and not 1/z, and that M+− scales as z2 rather than z3, as can again be

confirmed for explicit 2 → 2 scattering amplitudes. The q-lightcone gauge will play a more

important role in controlling the large z amplitudes in gravity below.

2.5 Scalar-graviton amplitudes

Now we consider gravity, beginning with the case two scalar-graviton amplitudes, where

we analytically continue the scalar momenta. The Lagrangian is

L =
1

2

√−ggµν∂µφ∂νφ. (2.22)

Naively, there are now z2 and z vertices, and the amplitudes should blow up with increasing

powers of z for more graviton legs. However, using diffeomorphism invariance we can choose

light-cone gauge for the background gµν ; taking qµ to point in the + direction the gauge

choice is

g++ = g+i = 0 and g+− = 1. (2.23)

Note that equivalently, writing gµν = ηµν + hµν , the gauge choice is h−µ = 0.

Light-cone gauge eliminates the O(z2) vertices, but again we have our unique diagram

when the two external scalar lines couple to a single insertion of the background gµν with

an O(z2) vertex. Thus

M(z) → z2. (2.24)
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This is much better behaved than the naive expectations, reflecting the power of exploiting

background light-cone gauge for gravity amplitudes, although since M(z) still diverges

there are no BCFW recursion relations using analytically continued scalar momenta.

2.6 Photon-graviton amplitudes

We now move on to consider two photon-graviton amplitudes where we analytically con-

tinue the photon momenta, corresponding to studying a hard photon moving in a soft

gravitational background. Our experience with gauge theory suggests that we exploit an

enhanced spin symmetry at infinite momentum. To make this manifest, we need to in-

troduce Lorentz (rather than space-time) indices. For this purpose, we use the vielbein

ea
µ; this introduces, in addition to the usual diffeomorphism redundancy, a gauge Lorentz

redundancy acting on the a indices, with the associated connection ωab
µ . The standard

relation to the metric variables are

gµν = eµaeνbη
ab, ωµab = eν

a∇µeνb. (2.25)

Since these fields connect the asymptotic lorentz tensor structure to the local geometry,

they are exactly what we need. The Lorentz gauge redundancy is useful; in addition to

fixing the diffeomorphism redundancy for the metric by choosing metric light-cone gauge,

we will fix the extra Lorentz redundancy by fixing light-cone gauge for ωµab.

Let us now consider the Lagrangian for a photon in a gravitational background

L = −1

4

√−ggµαgνβ∇[µAν]∇[αAβ]. (2.26)

If we add the gauge fixing term (∇µAµ)2, we obtain

L = −1

2

√−ggµαgνβ∇µAν∇αAβ (2.27)

where we have dropped a term proportional to Rµν because it vanishes on the background

field equations. We introduce the vielbein so that

Aµ = ea
µAa, ∇νAµ = ea

µDνAa, with DνAa = ∂νAa + ωνa
cAc (2.28)

The Lagrangian becomes

L = −√−ggµνηab(∂µAa + ωµa
cAc)(∂νAb + ωνb

dAd). (2.29)

Note that again, the two-derivative interactions which dominate the amplitude at large z

respect a spin “Lorentz” invariance, broken by the subleading interactions through non-

vanishing ωabµ which is antisymmetric in (ab). Choosing light-cone gauge for both gµν and

ωµab,

g++ = g+i = 0, g+− = 1 and ω+
ab = 0 , (2.30)

we see that there are no O(z2) vertices and the only O(z) vertices preserve the spin Lorentz

invariance; except for the by now familiar unique set of diagrams. Thus O(z2) interactions
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ǫ1\ǫ2 − + T

− 1 1 1

+ z4 1 z2

T1 z2 1 z2

T2 z2 1 z

Table 2: This table displays the z-scalings for a photon in a gravitational field.

must be proportional to ηab, while the O(z) interactions not proportional to ηab must

involve a single insertion of the connection ωµab which is anti-symmetric in (ab) and so

gives an anti-symmetric contribution to Mab. We therefore find

Mab = cz2ηab + zAab + Bab + · · · (2.31)

where Aab, like ω, must be antisymmetric, and Bab is arbitrary. Using the Ward Identity as

in the Yang-Mills section, the large z behavior of the amplitude for all helicity combinations

can be computed, and are displayed in table 2. We have checked that these results agree

with the known amplitudes for the 2 → 2 graviton-photon scattering amplitudes — a

non-trivial check, since individual Feynman diagrams diverge at least as fast as z2, with

possible additional z’s coming from contraction with the polarization vectors.

2.7 Amplitudes in general relativity

We finally apply the lessons above to prove the BCFW Recursion Relations for graviton

amplitudes. Of course the results can be anticipated via the KLT relations which express

graviton amplitudes as products of Yang-Mills amplitudes Mgrav ∼ Mgauge × Mgauge. In-

deed we will use a simple and natural trick [23] that was originally developed to help make

the KLT relations manifest in GR, in order to manifest an even larger spin “Lorentz”

invariance for graviton amplitudes, which will determine the large z behavior we seek.

The quadratic lagrangian for a gravitational fluctuation hµν about an arbitrary back-

ground gµν is, after adding the standard background de-Donder gauge fixing term [24]

L =
√−g

[

1

4
gµν∇µhβ

α∇νh
α
β − 1

8
gµν∇µhα

α∇νh
β
β − hαβhµν

1

2
Rβµαν +

1

2
gµν∂µφ∂νφ

]

(2.32)

where we have used to the background field equations to set Rµν = 0, and we have included

an extra dilaton field φ.

Since dilaton number is conserved, at tree level the dilaton will decouple from ampli-

tudes involving only spin-2 graviton external states. We have included it anyway because it

will allow us to perform a field re-definition that eliminates the hα
α terms in the Lagrangian,

which will enable us to manifest two separate copies of a spin “Lorentz” invariance acting

separately on the left and right indices of h. The field redefinition is

hµν → hµν + gµν

√

2

D − 2
φ, φ → 1

2
gµνhµν +

√

D − 2

2
φ (2.33)
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so that the lagrangian simply becomes

L =
√−g

[

1

4
gµνgαρgβσ∇µhαβ∇νhρσ − 1

2
hαβhµνRβµαν +

1

2
gµν∂µφ∂νφ

]

. (2.34)

We will henceforth drop the (re-defined) dilaton field, since it decouples from the amplitudes

we are interested in.

Mirroring the photon-graviton analysis above, we will now introduce a vielbein for the

background field. In order to make a clear distinction between ‘left’ and ‘right’ indices, we

will use a ‘left’ vielbein e and a ‘right’ vielbein ẽ, which introduces two copies of Lorentz

gauge redundancies with their associated connections ω, ω̃. We then write

hµν = ea
µẽã

νhaã, ∇αhµν = ea
µẽã

νDαhaã (2.35)

with

Dαhaã = ∂αhaã + ωb
αahbã + ω̃b̃

αãhab̃. (2.36)

Of course in reality e = ẽ and ω = ω̃, but this simple notation will help to keep track of

the fact that left-right index contractions never occur. The lagrangian becomes

L =
√−g

[

1

4
gµνηabη̃ãb̃DµhaãDνhbb̃ −

1

2
haãhbb̃R

abãb̃

]

. (2.37)

As in the photon-graviton case above, we choose light-cone gauge so that

ω+
ab = ω̃+

ãb̃
= g++ = g+i = 0 and g+− = 1, (2.38)

and there are no O(z2) vertices and the only O(z) vertices preserve both the spin Lorentz

symmetries — except for the unique set of diagrams that give contributions up to O(z2).

The O(z2) terms must come from the two derivative part of the lagrangian, which don’t

break either of the left or right spin “Lorentz” invariances, and are thus proportional to

ηabη̃ãb̃. The O(z) terms that violate the symmetry come from a derivative on h and a single

ω or ω̃ insertions, and hence have the form ηabÃãb̃ + Aabη̃ãb̃ where A, Ã are antisymmetric.

Now consider the O(1) parts of the amplitude. Since all propagators scale as 1/z, these can

only come directly from the O(1) vertices in the Lagrangian. There are terms involving ω2

or ω̃2, each of which breaks one of the “Lorentz” symmetries but not the other, so these

give amplitudes of the form ηabBãb̃ + Babη̃ãb̃. There are also terms proportional to ωω̃ and

the Riemman tensor, which are antisymmetric separately in (ab) and (ãb̃), and which thus

give a contribution to the amplitude Aabãb̃ which has the same antisymmetry properties.

Thus we find

Maãbb̃ = cz2ηabη̃ãb̃ + z
(

ηabÃãb̃ + Aabη̃ãb̃
)

+Aabãb̃+ηabB̃ãb̃ + Babη̃ãb̃ +
1

z
Cabãb̃+· · · (2.39)

where Aab is an antisymmetric matrix, Bab is an arbitrary matrix, and Aabãb̃ is antisymmet-

ric in (ab) and (ãb̃). It is quite remarkable that this symmetry structure is precisely what

we would get from ‘squaring’ the Yang-Mills ansatz above — for instance the ηacB̃ b̃d̃ type
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ǫ1\ǫ2 −− −+ ++ −T +T TT

−− 1/z2 1/z2 1/z2 1/z2 1/z2 1/z2

−+ z2 z2 1/z2 z2 1 1

++ z6 z2 1/z2 z4 1 z2

−T 1 1 1/z2 1 1 or 1/z 1 or 1/z

+T z4 z2 1 z4 or z3 1 z2 or z

TT z2 1 1/z2 z2 or z 1 or 1/z z2, z, or 1

Table 3: This table displays the z-scalings for gravity amplitudes, and more generally, for two-

index tensor fields. The various possibilities involving T polarizations depend on whether or not

the T factors in the graviton polarization tensors are parallel or orthogonal.

terms come from multiplying the zηab pieces in Mab
gauge with the (1/z)Bãb̃ terms in M ãb̃

gauge,

while the symmetry structure of Aabãb̃ arises from the product of the two anti-symmetric

matrices, AabÃãb̃.

Having established this ansatz for Mabãb̃, we contract with the graviton polarization

tensors to obtain the physical amplitudes. We again use the Ward identity to further

simplify the amplitude. The identity says that

pja(z)Maã,bb̃ǫkbb̃ = 0, (2.40)

so as in the gauge case, we can use this to show that

(pja + zqa)M
aã,bb̃ǫkbb̃ = 0 =⇒ qaM

aã,bb̃ǫkbb̃ = −1

z
pjaM

aã,bb̃ǫkbb̃. (2.41)

This means that we can take

ǫ−−

jaã = qaqã → 1

z2
pjapjã (2.42)

when we compute (−−, h) amplitudes. A quite non-trivial example is

M−−,−−(z) = ǫ−−

jaãMaã,bb̃ǫ−−

kbb̃
=

1

z2
pjapjãM

aã,bb̃(q∗b + zpjb)(q
∗

b̃
+ zpjb̃)

=
1

z
Cabãb̃pjapjãpjbpjb̃ + O

(

1

z2

)

→ 1

z
(2.43)

as z → ∞. This is good enough to obtain recursion relations, though a little extra work

shows that Cabãb̃ is not a completely generic tensor but is a sum of terms antisymmetric in

(ab), and in (ãb̃), so that even the O(1/z) term above vanishes and the leading amplitude

scales as 1/z2. Other results are similar and, as we noted above, they conform to the

pattern Mgrav ∼ Mgauge×Mgauge. We have checked that these accord with behavior of the

2 → 2 gravitational scattering amplitudes in arbitrary D. Since M(z → ∞) vanishes for

all (−−, h) helicity combinations, the BCFW Recursion Relations hold in general relativity

for all dimensions D ≥ 4.
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3. Discussion

We close with brief comments on some possible implications of our results. The ability to

use BCFW recursion relations to compute higher-dimensional amplitudes can be useful for

computing certain massive 4D amplitudes where the massive particles can be thought of as

KK modes in the dimensional reduction of the higher-dimensional theory (other extensions

of recursion relations to include massive particles have been discussed in [25, 26]). This

can be used for the analytic computation of some massive SM amplitudes of relevance to

the LHC. For instance, to compute gg → tt̄ + ng, we can consider a 5D amplitude with

all massless particles where all the gluon momenta are four-dimensional but the 5D top

quarks carry five-momentum. However, while it is nice to have analytic expressions for

these amplitudes, it does not really appreciably help with bread and butter QCD physics,

as the amplitudes can be numerically determined in any case. The real bottleneck is not in

determining amplitudes at tree level, but in performing the phase space integrals needed

to convert the amplitudes to rates. Nevertheless, our discussion does suggest interesting

avenues for further theoretical exploration.

Our analysis of the large z scaling of tree amplitudes relied heavily on the form of the

Yang-Mills and Gravity Lagrangians. However we know that the structure of Yang-Mills

and Gravity are forced on us by consistent S-matrices for massless spin 1 and spin 2 particles

(with minimal derivative interactions). It must therefore be possible and illuminating to

determine the large z scalings directly from S-matrix arguments, without passing through

the Lagrangian as an intermediary.

While the BCFW recursion relations beautifully realize the S-matrix program for tree

amplitudes, the situation at loop level is not quite as transparent even though much is

understood [27]. One issue, for instance, is the analytic structure of M(z), where in

addition to expected poles and cuts, there are also ‘unreal’ poles without a clear physical

interpretation. It would be interesting to see if our picture sheds any further light on this.

Furthermore, the large z scaling of amplitudes is modified at loop level but, in examples,

continues to exhibit very interesting patterns that would be interesting to understand along

the same lines as our tree-level analysis.

A related issue is the much better than expected behavior that has been found for

gravity amplitudes at loop level. The most intriguing recent example of this has been for

N = 8 supergravity, where cancelations not obviously guaranteed by SUSY have led some

to conjecture that the theory might even be perturbatively finite [28, 29]. But even pure

gravity amplitudes appear to be better behaved than expected by naive power-counting [15,

16]. This seems very surprising, especially since in the usual view, power-counting is

controlled purely by Wilsonian dimensional analysis, and does not care about whether we

have a “simple” non-renormalizable theory of scalars like the chiral Lagrangian, or a more

“complicated” one such as gravity. However it appears that precisely these “complicated”

theories might have unexpectedly good UV behavior! Why should this be?

A possible clue is that these cancelations have progenitors in the soft large z behavior

of tree amplitudes we have discussed in this paper [15], which arise as cuts of loop diagrams.

But we have understood why certain graviton amplitudes are softer at infinite (complex)
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momentum than gauge amplitudes which are in turn softer than the scalar ones — at infinite

momentum, the amplitudes for spin s particles are governed by s copies of spin “Lorentz”

symmetries — so the more “complicated” theories with higher spin are actually constrained

by larger symmetries. It is tempting to speculate that these enhanced symmetries are

further extended in theories with high degrees of supersymmetry and can help illuminate

the mysterious cancelations found in N = 8 supergravity.
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